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Abstract 
A modified lumped parameter model has been used to study transient conduction in phase change materials (PCM) in 

cylindrical coordinates. The two-point Hermite approximation is used to compute the average temperatures and the 
temperature gradient in each phase. The performance of PCM has been analyzed during the charging processin terms of 
energy storage and density. The effect of Stefan number on melting front dynamics is comprehensively studied. The results 
are verified with exact solutions as well as steady-state asymptotes and also show good agreement with existing 
experimental data. 
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INTRODUCTION 

Thermal energy storage (TES) systems are a sustainable, energy efficient alternative to conventional 
heating and cooling methods. TES can play a pivotal role in synchronizing energy demand and supply, both on a 
short and long term basis.TES is divided into sensible, latent, and thermochemical mechanisms. Latent thermal 
storage using phase change materials(PCM) has a relatively constant melting/solidification temperature,higher 
energy storage density compared to sensible TES,and less complexity and lower manufacturing cost than the 
thermochemical TES [1]. 

Due to the non-linearity of phase change problems, analytical solutions to the analysis of phase change 
problem are limited by assumptions such as small Stefan number, specific boundary conditions, and simple 
geometries.  The Stefan number,Ste, represents the ratio of the sensible heat to the latent heat.  The assumption of 
small Stefan number limits such models to materials and operating temperature conditionswhere the sensible 
heat is much smaller than the latent heat. Stefan’s early study of the solidification front solution assumed the 
liquid is maintained at the melting temperature, simplifying the model to a single phase problem [2]. Neumann 
[3]developed a two-phase solution for asemi-infinite region at constant temperature greaterthan the temperature 
of fusion with the solid-liquidinterface at the temperature of fusion.Paterson [4]developed a simple exact 
solution incylindrical coordinates with supply or removal of heat by a continuous line source. For regions 
bounded internally or externally by a circular cylinder with constant surface temperature, the geometry 
considered in this paper, there are no analytical solutions available in the literature to the best of our 
knowledge.Moreover, there are no closed form solutions for the problem with volumetric heat generation or 
other boundary conditions such as constant heat flux or radiation. 

Phase change problems with complex geometry, turbulent flow, temperature dependent properties, liquid 
motion, radiation flux, and material with internal heat source or sink, are usually solved by using numerical 
methods [5,6]. Numerical solutions for phase change problems come in two classes: front-tracking methods and 
fixed-grid enthalpy methods[7]. In general, the front-tracking methods are accuratebut limited to simple 
geometries ascomplex geometries require massive parallel computing on a moving mesh. Sharp tracking 
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techniques are required to accurately capture the dynamics of the interface [8]. In a new front tracking method, 
Lattice-Boltzmann simulation is applied to treat the latent-heat source term by modifying the equilibrium 
distribution function for the temperature[9]. The fixed-grid approach is simpler and more practical. In this 
method, latent heat is usually absorbed into the enthalpyof the system, which is treated as a temperature 
dependent variable,and latent heat flow is constructed through volume integration [10].  

Approximation methods can also be applied to solve Stefan problem. Goodman [11] developed an integral 
equation thatexpresses the overall heat balance of the system by integrating the one-dimensional heat conduction 
equation with respect to the spatial variable and inserting boundary conditions. In this method, selecting a proper 
approximation ofthe temperature distribution is difficult; the use of a high-order polynomial complicates this 
approachand maynot improve the accuracy of the solution.Mitchell and Myers [12] have developed a combined 
integral method by combining the standard integral and refined integral methodsproposed by Sadoun and Si-
Ahmed [13,14].  A quasi-steady approximation was applied byJiji and Gaye [15]to study one-dimensional 
solidification and melting of a slab with uniform volumetric heat generation.In this common approximation, it is 
assumed that the transient term in the heat equation can be neglected for small Ste. 

Considering the complexity and cost of numerical solutions as well as the limiting assumptions made in 
the existing analytical and approximation methods, there is a need for a more general and easy-to-use solution 
that can predict the effects of important parameters on solidification and melting.Semi-analytical solutions are an 
alternative method to deal with the complexity of the phase-change problems. Mirzaeiet al.[16] proposed a one-
dimensional semi-analytical lumped model using a resistance-capacitance (RC) circuit concept containing 
variable capacities, where the nonlinear energy balance equations were solved by numerical approach [16]. The 
lumped parameter method is a practical solution for solving heat conduction problems, although it has a 
restriction for Biot number (i.e.,Bi<0.1). Asthe heat conduction coefficient in PCM is low, the classical lumped 
method is not well fitted to the phase change problem.Cotta and Mikhailov [17] proposed an improved lumped 
parameter method for steady and transient heat conduction problems based on Hermite approximation for 
integrals that define averaged temperature and heat fluxes.An and Su [18] used this improved method for the 
melting process in a slab. 

In the present study, an improved lumped parameter model is used to examine the phase change process 
using the Hermite two-point approximation in cylindrical coordinates. Unlike previous analytical models,this 
model has no limitation for Ste, temperature, or boundary conditions, and can be easily implemented for phase 
change processes.The goal of this study is to develop a general easy-to-use method thatcaptures the phase 
change process in cylindrical coordinates, which are widely used in the energy industry.  

 

MODEL DEVELOPMENT 
In the present work, the one-dimensional transient melting process in an annular pipe is considered. The 

two walls are maintained at a constant temperature and the temperature at the solid-liquid interface, S(t), isTm, 
the melting temperature.The schematic of the problem in cylindrical coordinates is shown in Fig. 1.The 
volumetric heat generation,q ̇, is considered in this model. Initially, the PCM is at a temperature lower than the 
melting temperature. Afterwards, the innerwall temperature increases toTb,i.e., higher than the melting 
temperature, and the melting front starts moving.The following assumptions are employed to the analysis of the 
melting process in PCMs: (1) the physical properties of both phases are constant; (2) the mushy melting front is 
assumed to be a line; (3) melting occurs at a constant temperature,Tm; (4) motion of liquid phase is negligible; 
(5) whenever heat generation rate is considered throughout the solid and liquid regions, it is assumed to be 
uniform and time-independent; (6) the changes in volume during phase change are negligible. 
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Fig. 1. The schematic of melting in annular pipes 

 
Using the above assumptions, heat conduction equations in liquid and solid can be written as follows: 
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where l and s represent properties of liquid and solid phase, respectively.The energy balance at the 
interface of solid and liquid phasesis: 
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The governing equations, boundary conditions, and initial conditions in dimensionless form are given in 
Table 1.  

 

Table 1. Dimensionless governing equations, boundary conditions, and initial conditions 
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The dependence of the interface velocity on the temperature gradient causes the phase change conduction 
equations to be non-linear. There are exact solutions for one-dimensional phase change in a semi-infinite region 
and small Ste. Therefore, approximate, numerical, or semi-analytical solutions should be usedfor analyzing the 
phase change process in a confined region[3].The present semi-analytical model is an improved lumped model 
using Hermite approximation. In the present lumped parameter model, the spatially averaged dimensionless 
temperature of the liquid and the solid are defined as follows 
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Spatial integrating of theenergy equations of each phase,and considering the averaged temperatures 
defined in Eqs. (3) and (4), the following are obtained 
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In an attempt to improve the approximation approach of the classical lumped model, some work has been 
done based on Hermite-type approximations for integrals [19,20]. In the present work, lumped transient heat 
conduction with melting in an annular pipe is solved using Hermite-type approximation. Using the general 
Hermite approximation makes it possible to write an integral of a function as a combination of the function and 
its derivatives at the integration limits in the following form[21] 
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(α,β)=((α+1)!(α+β+1-v)!)/((v+1)!(α-v)!(α+β+2)!),andh=b-a. In the lumped model, a relation 
between boundary temperatures, averaged temperatures, and temperature gradient at two walls and the liquid-
solid interface is achievable by implementing the Hermite-type approximation. In the present model,H(0,0) is 
used for the product of length and temperature gradients, andH(1,1) is used for averaged temperatures, as 
follows: 
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The system of equations formed by Eqs. (5), (6), (8)-(11), and the interface energy balance can be solved 
analytically. After implementing the constant wall temperatures in these equations, a system of three ordinary 
differential equations for the location of interface, averaged temperatures of liquid and solidis obtained as 
follows: 
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The above system of equations was solved usinga stiff MATLAB ordinary differential equation 
(ODE)solver by assuming that initially the melting front was at the inner radius and both phases were at the 
same initial temperature. 
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RESULTS 
Melting of phase change materials in cylindrical coordinate is analyzed byimproved lumped-parameter 

model with Hermite approximation. For verification,the proposed model is comparedagainstavailable asymptotic 
analyticalsteady-state solution as well as experimental data. 

 

Case I. Solidification due to a line heat sink atthe center of a cylindrical pipe 
In this section, solidification in a cylinder with a central heat sink is studied. The present model is applied 

to this problem and the results are compared to the asymptotic solutions for long and short terms.A line heat sink 
(limξ→0(ξ∂θs/∂ξ)=Q/(2πks(Tm-Tb))=Q*)is placed in the center of the cylinder,while at outer radius constant 
temperatureθbis imposed. For the short time solution, when solidification penetration is much smaller than the 
radius of the cylinder, the phase change problem is equivalent to solidification by a line heat sink in an infinite 
medium with cylindrical symmetry. Paterson [4]reported the exact solution for this problem using an exponential 
integral function in the form ofEi(-r2

 

/4αt). Consequently, the dimensionless interface energybalance is as 
follows, 
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where solidification interface can be obtained fromη(Fo) = (4λτ)1/2. For the long-term asymptote,the steady state 
solution is considered by setting the derivative of temperature with respect to time equal to zero.Figure2 shows 
the comparison of the present model with short and long-term asymptotes. In small Fourier numbers (early 
moments of solidification), the model well matches the short-term asymptote while for high Fo numbers, it is 
fitted to the steady-state solution asymptote. 

 
Fig. 2. Comparison between solidification frontsfromthe present model,the short term, and long term asymptotes 

 
Case II.Solidification in annular pipes with constant temperature at walls 

The model results were compared to the experimental study of Sparrow [22] in whicha test cell 
wassituated in a temperature-controlled water bath to maintain a constant outer wall temperature.Figure 3 (a) 
depicts a schematic of the experimental apparatus used in [22]. The phase change medium was paraffin, 99% 
pure n-eicosane, with a melting temperature of 36.4°C.The inner and outer walls werekept at constant 
temperatures of 8.6˚Cand 54.2˚C, respectively.The interface location was read to 0.01 mm (Vernier caliper) and 
thermocouple outputs were monitored by a voltmeter (± 0.1μV).The properties of paraffin wax (n-
eicosane),listed in Table 2,were used in the model.The thermal conductivity valueswere measured via steady-
state method [23] and by transient plane source (TPS) [24]. In latter study, the effect of three different methods 
of solidification on solid thermal conductivity was assessed; ambient solidification, ice-water bath solidification, 
and oven solidification.In all methods, thermal conductivity of n-eicosanevaried little from10 to 33˚C, and 
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sharply rose at temperatures from 33 to 35˚C because of the non-equilibrium state of n-eicosane near phase 
transition. Moreover, thermal conductivity obtained from the ambient solidification method was close to the 
experimental data in Ref. [23]. It was reported that in ice-water bath solidification, a fast process, the rapidly 
formed solid paraffin was porous which led to lower thermal conductivity compared to denser paraffin formed 
by slowersolidification methods.In the present study, the solid thermal conductivity at the minimum and 
maximum reported temperatures and ambient solidification methodare consideredin order to check the validity 
of the model and sensitivity of the results to the solid thermal conductivity. 

 
Table 2. Physical properties of n-eicosane 

Properties Solid Liquid 
Melting Point(°C) 36.4 [25] - 
Heat of fusion(kJ/kg) 247.3[25] - 
Density(kg/m3 778[25] ) 856[25] 
Thermal conductivity(W/(mK)) 0.42[23] , 0.4212-0.5503 [24] 0.150[25] 
Specific heat(kJ/(kgK)) 2.010[25] 2.210[25] 

 

Figure 3 (b)shows the comparison between Sparrow’s experimental data [22] and the results obtained 
from the present model forks=0.4212 andks=0.5503, which are the reported solid thermal conductivity at 
10°Cand 35°C in ref. [24]. The present model shows good agreementwith the experimental data.The maximum 
relative difference between the experimental data and the present results, which is forks=0.4212, is 
approximately 9.5%; this discrepency is due to the uncertainty of the experiment, the nature of whisker-like 
crystals at the interface, and the accuracy of the solid thermal conductivity.We noticed that the model’s results 
are very sensitive to the solid thermal conductivity. The maximum relative difference between the results 
forks=0.4212and ks

 
=0.5503is 7.7%. 

(a) 

 

(b) 

 
Fig. 3. (a) Experimental apparatus [22], and (b) Position of solid-liquid interface 

versus time for freezing in a non-superheated liquid 
 

Case III. Melting in anannularTES during charging process 
The results of melting in an annular TES system, simulated usingthis model,arecompared with the results 

from steady-state asymptote. An annular pipe similar to the geometry shown in Fig.1, with constant temperature 
at both walls is studied.Figure4 (a) shows the moving boundary location as a function of time for different Stefan 
numbers. The aspect ratio, ε, is equal to 0.5 and the difference between the dimensionless temperatures of the 
inner and outer walls is3. Other dimensionless parameters are:kP

*
P=0.8, αP

*
P=0.5, and qP

*
PRgenR=0. For allStefan 

numbers, the melting front starts from the inner pipe, ε=0.5, and the location of interface at equilibrium state is 
independent of the Stefan number. The steady-state location obtained from the present lumped parameter model 
is 0.7671, in good agreement with the steady-state exact solution, i.e., 0.7660.The slope of this graph (Fig. 4a), 
which represents the velocity of the interface, is related to the Stefan number. As the Stefan number increases, 
the melting process reaches the steady state condition faster.The dimensionless heat flux at the inner and outer 
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wall is shown in Fig. 4 (b).Again, the model results are in good agreement with the steady state exact solutions. 
The dimensionless heat flux at the outer pipe obtained from the present lumped parameter model is -6.1694while 
thevalue from the exact solution is -6.0593. The same agreement was achieved for the dimensionless heat flux at 
the inner wall: 12.3408 forlumped parameter model and 12.1186 from the exact solution. Thus, the results from 
the steady state region of the present model are validated with exact solutions and maximum relative difference 
of 1.8% has been observed. 

Having dimensionless heat fluxes at both walls, the rate of stored energy can be evaluated for a confined 
PCM by writing the energy balance, Estored=δE in-δEout=δEǀr=a-δEǀr=b

 

. The dimensionless rate of stored energy is 
derived as follows 

 (16) 

 

Figure4(c) shows the changes of dimensionless rate of stored energy over dimensionless time during 
melting, charging process. At small Fourier numbers, there is a rise in stored energy because of the rapid growth 
of the melted region in PCM, which then settles to zero, the steady state condition. The area below this curve 
represents the total energy stored in the PCM, which can be obtained by integrating the rate of stored energy 
over time. Charging is complete when the rate of energy storage reacheszero. The energy storage density (ESD) 
is defined as stored energy divided by volume of PCM, and is derived indimensionless form in equation (17). 
Fig. 4(d) shows the dimensionless energy storage density through the time. At each timeFo, ESD can be obtained 
from this graph. Considering the whole charging process, dimensionless ESD is equal to 1.2634. 
 

( )*
1

2

( ) ( )

1
l s

ref

k FoESD

ESD
ξ ε ξ

ε θ ξ θ ξ

ε
= =

∂ ∂ − ∂ ∂
=

−
 (17) 

 

(a) 

 

(b) 
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Fig. 4. (a) Dimensionless interface location over dimensionless time with different Stefan numbers,(b) 

dimensionless heat flux predicted by the present model at the inner and outer walls, (c) dimensionless rate of 
stored energy, and (d) dimensionless energy storage density during the charging process 
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CONCLUSIONS 
The melting process wasanalyzed with an improved lumped parameter model using Hermite two-point 

approximation for averaged temperatures and heat fluxes. The model showedgood agreementwith exact 
solutions of the short- and long-term asymptotes for solidification due to a line heat sink in the center of a 
cylindrical pipe, as well as existing experimental data for solidification in annular pipes having constant 
temperatures at walls. Moreover, as a case study, melting in annular TESwasstudied.The effect of Stefan number, 
which is a key parameter in TES, on the location of the interface at equilibrium was found to be independent of 
the Stefan number, and as the Stefan number increases the melting process reaches the steady state condition 
much faster.Important parameters in assessing TES systems, the stored energy and charging/discharging 
timewere studied in the present modelstored energy can beobtained bythe dimensionless heat fluxes at inner and 
outer walls. The proposed model is applicable for a variety of boundary conditions such as constant temperature, 
adiabatic, constant heat flux and convective conditions.Moreover, thepresent easy-to-use model can be utilized 
to find storage efficiency and energy storage density to perform optimized design of latent TES systems. 
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Nomenclature 
c specific heat, (J/(kgK))  p t time (s) 
Ė reference rate of energy, Ėref ref = 2πksl (Tm-Tb Greek letters ) 
ESD dimensionless energy storage density,  ref α thermal diffusivity (m2/s)  
 ESDref =ks (Tm-Tb α) dimensionless thermal diffusivity, α* *=αl / αs 
Fo thermal Fourier number, Fo=αst/rb ε 2 aspect ratio of inner pipe to outer pipe, ε=ra /rb 
H Hermite approximation η dimensionless location of solid-liquid interface,  
k thermal conductivity (W/(mK))    η(Fo)=S(t) /rb 
k dimensionless thermal conductivity, k* *=kl / k θ s dimensionless temperature, θ=(T(r,t)-Tb) /(Tm-

Tb) 
L latent heat of melting (J/kg)  ξ dimensionless space coordinate, ξ=r/rb 
l length of the annular pipes (m)  ρ similarity parameter 
q̇ volumetric heat generation (W/m3 λ )  similarity parameter 
q* dimensionless volumetric heat generation,   gen Subscripts 
 q*

gen=r2
refq ̇gen/(ks(Tm-Tb a )) inner wall (ξ=ε) 

q̇’’ reference heat flux, q̇ref 
’’

ref =ks(Tm-Tb)/r b b outer wall (ξ=1) 
Q dimensionless heat sink strength,  * i initial 
 Q*=Q/(2πks(Tm-Tb l )) liquid 
r radial coordinate (m)  ref reference 
Ste Stefan number, Ste=cp,s (Tm-Tb s )/L solid 
S location of interface (m)  Superscripts 
T temperature (K) ¯ averaged value between ξ=ε and ξ=1 
T melting temperature (K)  m * dimensionless value 
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